1,496 research outputs found

    Cosmic Shear from Galaxy Spins

    Get PDF
    We discuss the origin of galactic angular momentum, and the statistics of the present day spin distribution. It is expected that the galaxy spin axes are correlated with the intermediate principal axis of the gravitational shear tensor. This allows one to reconstruct the shear field and thereby the full gravitational potential from the observed galaxy spin fields. We use the direction of the angular momentum vector without any information of its magnitude, which requires a measurement of the position angle and inclination on the sky of each disk galaxy. We present the maximum likelihood shear inversion procedure, which involves a constrained linear minimization. The theory is tested against numerical simulations. We find the correlation strength of nonlinear structures with the initial shear field, and show that accurate large scale density reconstructions are possible at the expected noise level.Comment: Accepted by the ApJL, revised discussion, minor changes, LaTex file, 8 pages, 1 ps figur

    The Nonlinear Evolution of Galaxy Intrinsic Alignments

    Full text link
    The non-Gaussian contribution to the intrinsic halo spin alignments is analytically modeled and numerically detected. Assuming that the growth of non-Gaussianity in the density fluctuations caused the tidal field to have nonlinear-order effect on the orientations of the halo angular momentum, we model the intrinsic halo spin alignments as a linear scaling of the density correlations on large scales, which is different from the previous quadratic-scaling model based on the linear tidal torque theory. Then, we analyze the halo catalogs from the recent high-resolution Millennium Run simulation at four different redshifts (z=0,0.5,1 and 2) and measure quantitatively the degree of the nonlinear effect on the halo spin alignments and its changes with redshifts. A clear signal of spin correlations is found on scales as large as 10 Mpc/h at z=0, which marks a detection of the nonlinear tidal effect on the intrinsic halo alignments. We also investigate how the nonlinear effect depends on the intrinsic properties of the halos. It is found that the degree of the nonlinear tidal effect increases as the halo mass scale decreases, the halo specific angular momentum increases, and the halo peculiar velocity decreases. We discuss implication of our result on the weak gravitational lensing.Comment: ApJ in press, revised version, mistakes and typos corrected, discussion improved, 29 pages, 11 figure

    Power Spectra in Global Defect Theories of Cosmic Structure Formation

    Full text link
    An efficient technique for computing perturbation power spectra in field ordering theories of cosmic structure formation is introduced, enabling computations to be carried out with unprecedented precision. Large scale simulations are used to measure unequal time correlators of the source stress energy, taking advantage of scaling during matter and radiation domination, and causality, to make optimal use of the available dynamic range. The correlators are then re-expressed in terms of a sum of eigenvector products, a representation which we argue is optimal, enabling the computation of the final power spectra to be performed at high accuracy. Microwave anisotropy and matter perturbation power spectra for global strings, monopoles, textures and non-topological textures are presented and compared with recent observations.Comment: 4 pages, compressed and uuencoded RevTex file and postscript figure

    Pulsar timing arrays as imaging gravitational wave telescopes: angular resolution and source (de)confusion

    Full text link
    Pulsar timing arrays (PTAs) will be sensitive to a finite number of gravitational wave (GW) "point" sources (e.g. supermassive black hole binaries). N quiet pulsars with accurately known distances d_{pulsar} can characterize up to 2N/7 distant chirping sources per frequency bin \Delta f_{gw}=1/T, and localize them with "diffraction limited" precision \delta\theta \gtrsim (1/SNR)(\lambda_{gw}/d_{pulsar}). Even if the pulsar distances are poorly known, a PTA with F frequency bins can still characterize up to (2N/7)[1-(1/2F)] sources per bin, and the quasi-singular pattern of timing residuals in the vicinity of a GW source still allows the source to be localized quasi-topologically within roughly the smallest quadrilateral of quiet pulsars that encircles it on the sky, down to a limiting resolution \delta\theta \gtrsim (1/SNR) \sqrt{\lambda_{gw}/d_{pulsar}}. PTAs may be unconfused, even at the lowest frequencies, with matched filtering always appropriate.Comment: 7 pages, 1 figure, matches Phys.Rev.D versio

    A Causal Source which Mimics Inflation

    Get PDF
    How unique are the inflationary predictions for the cosmic microwave anisotropy pattern? In this paper, it is asked whether an arbitrary causal source for perturbations in the standard hot big bang could effectively mimic the predictions of the simplest inflationary models. A surprisingly simple example of a `scaling' causal source is found to closely reproduce the inflationary predictions. This letter extends the work of a previous paper (ref. 6) to a full computation of the anisotropy pattern, including the Sachs Wolfe integral. I speculate on the possible physics behind such a source.Comment: 4 pages, RevTex, 3 figure

    Normalizing the Temperature Function of Clusters of Galaxies

    Full text link
    We re-examine the constraints which can be robustly obtained from the observed temperature function of X-ray cluster of galaxies. The cluster mass function has been thoroughly studied in simulations and analytically, but a direct simulation of the temperature function is presented here for the first time. Adaptive hydrodynamic simulations using the cosmological Moving Mesh Hydro code of Pen (1997a) are used to calibrate the temperature function for different popular cosmologies. Applying the new normalizations to the present-day cluster abundances, we find σ8=0.53±0.05Ω00.45\sigma_8=0.53\pm 0.05 \Omega_0^{-0.45} for a hyperbolic universe, and σ8=0.53±0.05Ω00.53\sigma_8=0.53\pm 0.05 \Omega_0^{-0.53} for a spatially flat universe with a cosmological constant. The simulations followed the gravitational shock heating of the gas and dark matter, and used a crude model for potential energy injection by supernova heating. The error bars are dominated by uncertainties in the heating/cooling models. We present fitting formulae for the mass-temperature conversions and cluster abundances based on these simulations.Comment: 20 pages incl 5 figures, final version for ApJ, corrected open universe \gamma relation, results unchange

    Optimizing Observational Strategy for Future Fgas Constraints

    Full text link
    The Planck cluster catalog is expected to contain of order a thousand galaxy clusters, both newly discovered and previously known, detected through the Sunyaev-Zeldovich effect over the redshift range 0 < z < 1. Follow-up X-ray observations of a dynamically relaxed sub-sample of newly discovered Planck clusters will improve constraints on the dark energy equation-of-state found through measurement of the cluster gas mass fraction fgas. In view of follow-up campaigns with XMM-Newton and Chandra, we determine the optimal redshift distribution of a cluster sample to most tightly constrain the dark energy equation of state. The distribution is non-trivial even for the standard w0-wa parameterization. We then determine how much the combination of expected data from the Planck satellite and fgas data will be able to constrain the dark energy equation-of-state. Our analysis employs a Markov Chain Monte Carlo method as well as a Fisher Matrix analysis. We find that these upcoming data will be able to improve the figure-of-merit by at least a factor two.Comment: 11 pages, 8 figure

    Near term measurements with 21 cm intensity mapping: neutral hydrogen fraction and BAO at z<2

    Full text link
    It is shown that 21 cm intensity mapping could be used in the near term to make cosmologically useful measurements. Large scale structure could be detected using existing radio telescopes, or using prototypes for dedicated redshift survey telescopes. This would provide a measure of the mean neutral hydrogen density, using redshift space distortions to break the degeneracy with the linear bias. We find that with only 200 hours of observing time on the Green Bank Telescope, the neutral hydrogen density could be measured to 25% precision at redshift 0.54<z<1.09. This compares favourably to current measurements, uses independent techniques, and would settle the controversy over an important parameter which impacts galaxy formation studies. In addition, a 4000 hour survey would allow for the detection of baryon acoustic oscillations, giving a cosmological distance measure at 3.5% precision. These observation time requirements could be greatly reduced with the construction of multiple pixel receivers. Similar results are possible using prototypes for dedicated cylindrical telescopes on month time scales, or SKA pathfinder aperture arrays on day time scales. Such measurements promise to improve our understanding of these quantities while beating a path for future generations of hydrogen surveys.Comment: 6 pages, 5 figures. Submitted to Phys. Rev. D. Addressed reviewer comments. Changed figure format, added more detailed technical discussion, and added forecasts for aperture arrays. Added references

    Stochastic urban pluvial flood hazard maps based upon a spatial-temporal rainfall generator

    Get PDF
    It is a common practice to assign the return period of a given storm event to the urban pluvial flood event that such storm generates. However, this approach may be inappropriate as rainfall events with the same return period can produce different urban pluvial flooding events, i.e., with different associated flood extent, water levels and return periods. This depends on the characteristics of the rainfall events, such as spatial variability, and on other characteristics of the sewer system and the catchment. To address this, the paper presents an innovative contribution to produce stochastic urban pluvial flood hazard maps. A stochastic rainfall generator for urban-scale applications was employed to generate an ensemble of spatially—and temporally—variable design storms with similar return period. These were used as input to the urban drainage model of a pilot urban catchment (~9 km2) located in London, UK. Stochastic flood hazard maps were generated through a frequency analysis of the flooding generated by the various storm events. The stochastic flood hazard maps obtained show that rainfall spatial-temporal variability is an important factor in the estimation of flood likelihood in urban areas. Moreover, as compared to the flood hazard maps obtained by using a single spatially-uniform storm event, the stochastic maps generated in this study provide a more comprehensive assessment of flood hazard which enables better informed flood risk management decisions
    corecore